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Abstract. We study a ZD triagonal lattice with competing first- and second-neighbour 
harmonic interactions and a (p4 on-site potential. At zero temperature we determine the 
classical ground-state configurations of low periodicity. The phase diagram in the interac- 
tion parameter space is significantly different from that calculated for the piecewise 
quadratic on-site potential. The main difference is in the phonon stability regions of the 
different periodicities. 

1. Introduction 

Crystal polytypes (Behnke et al 1986) and incommensurate structures (Janssen and 
Tjon 1982, Jannsen 1986a) often result from the competition of different interactions 
of an atom or an Ising spin with its environment. An extensively studied model which 
presents the competition between two different ordering mechanisms (the substrate 
potential and the interatomic interactions of the overlying atomic chain) is the I D  

Frenkel-Kontorova model. While it was originally constructed as a prototype to study 
plastic deformation, it has been used to study commensurate-incommensurate phase 
transitions (Aubry 1979, Bak 1982) in one dimension. 

In another context, a bistable on-site potential is an important ingredient in the 
description of perovskite ferroelectrics. In this model the nonlinear potential is between 
an ion and its electronic shell. It is usually assumed to be a 'p4 potential which simulates 
the strong anharmonic polarisability of the 02- ion, an important element in most 
perovskites (Bilz et 41 1987). 

The anharmonic 'p4 bistable potential has a smooth maximum at zero and is steep 
for large arguments, so that it is energetically unfavourable to move to large displace- 
ments. This on-site potential is often approximated by a double quadratic (DQ) 
potential, as in the study of the frustration due to the competing elastic constants for 
first- and second-neighbour interactions, in a I D  chain or a ZD structure (Axel and 
Aubry 1981, Buttner and Heym 1987). Its important advantage is that almost all the 
mathematical problems can be solved analytically. Its drawbacks, as a physical model, 
are the discontinuity in the force at zero displacement and the behaviour for large 
displacements. The first can be remedied by introducing a piecewise quadratic potential 
which can be treated self-consistently by simple eigenvalue techniques and using the 
solution of the DQ as a 'Green function' for the problem (Flytzanis et a1 1979). 
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Extensive work in various nonlinear lattice models has been done by Bilz, Buttner 
and co-workers (Bilz et a1 1980, Behnke and Buttner 1982) in one-dimensional models, 
and in a few two-dimensional square lattices including anisotropy. In ZD models the 
on-site potential is doubly quadratic. The (p4 model, due to its difficulty in analytic 
computations, has been studied only in I D  (Frosch and Buttner 1985). It is of interest 
therefore to extend these results to ZD. 

It should also be remarked that the double-well-type potentials present many 
similarities to the Ising models (Katsura et a1 1986) but also some differences which 
will be mentioned in the discussion. Also results from classical planar X Y  models 
and ZD classical Heisenberg models show a significant correspondence with the results 
from anharmonic bistable on-site potentials. A similar problem of current interest is 
the formation of noble-gas monolayers on a graphite substrate which can be modelled 
by a (p4 potential (Gordon and Villain 1985). 

In this paper we study the classical static configurations for a triagonal planar 
lattice at zero temperature with first- and second-neighbour interactions and a (p4 

on-site potential perpendicular to the plane. The displacements are perpendicular to 
the plane and the interaction parameters are such that we are in the displacive limit. 
The results will be compared with recent calculations for a DQ on-site potential (Buttner 
and Heym 1987). The above results can also be relevant to surface reconstruction 
(Kanamori and Okamoto 1985) as in the [ 11 11 silicon surface where the 7 x 7 reconstruc- 
tion is caused mainly by a perpendicular movement of the surface atoms and the 
appearance of adatoms to saturate dangling bonds (Takayanagi et a1 1985). The model 
may also represent a molecular group (or a magnetic atom) centred on fixed lattice 
sites but free to rotate about these sites. It can also describe a rotating BX4 tetrahedron 
in the family of A2BX4 compounds (Janssen 1986b) or an octahedron (Nb06) in a 
Ba2NaNb50,5 film (Srolovitz and Scott 1986). In the order-disorder limit one can find 
the degenerate ground states and define an appropriate clock model (Srolovitz and 
Scott 1986) which simplifies the calculations. 

The paper is organised as follows. In section 2, we present the model and some 
simple analytical solutions. In section 3 we determine the phase diagram and compare 
different potentials, while in section 4 we examine the stability of the different periodic 
configurations. In the last section we summarise and discuss our results. 

2. The nonlinear lattice model 

We consider a two-dimensional triagonal lattice with atomic displacements U,,,, normal 
to the surface, where ( n ,  m )  locate the lattice points on the skew coordinate system 
shown in figure l ( a ) ,  in the x and y directions respectively. The Hamiltonian of the 
system is 

1 
2 n,m 

H = -  C ( M u Z , , m + f i [ ( u ~ + l , m - ~ n , m ) ’ + ( ~ n , m + l  - ~ n , m ) ’ + ( ~ n - l , m + l  - u n , m 1 2 1  

+ f 2 [  ( un + I .m - 2  - U,,,, 1’ + ( un t 2 . m  - 1 - u n , m  

+ C V ( u n , m )  (1)  

+ ( un + 1 ,m + I - u n .  m )’I) 

n,  m 

where f l  and f 2  are the interaction parameters with the first and second neighbour. 
V (  U,,,,) is the bistable on-site potential given for the (p4 model by 

V(u,,rn) =ag,(U:,, -g0/g4)2 (2)  
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Figure 1. ( a )  Triagonal lattice. ( b )  Plot of the (p4 potential (full line) for go = 0.5, g, = 0.5 
and double quadratic potential (broken line) with cr = 1 ,  k 2 =  1. 

with g o ,  g ,> 0, and for the DQ by 

V(un,m) = i k Z ( u n , m - c n , m ) 2  (3) 

with = go sgn(u,,,) and eo is the position of the potential minimum. In what 
follows we consider the ' p 4  potential and make comparisons with the results for the 
DQ potential (Buttner and Heym 1987). The mass A4 can be easily scaled out by 
choosing appropriate units. Here for simplicity (but without losing generality) we 
chose M = l .  

The important physical parameters of the '9, (DQ) potential are the position of the 
minima uo = a ( uo = go), the barrier height Eo = g i / 4 g 4  ( E o  = k 2 e i / 2 )  and the 
frequency of oscillation U;= 2g0 (oo= k 2 )  near the minima. Since both potentials (p4 
and DQ) have only two parameters, we can equate only two of the above physical 
quantities. In comparing the two potentials for displacements near the minima we 
have to fix uo and w o ,  while for large displacements it is more appropriate to fix uo 
and the potential barrier Eo. For simplicity we have chosen the former which is 
appropriate for small f, and f 2 .  Then we can eliminate one of the parameters ( g o  or 
k 2 )  by normalising all the interatomic force constants to w i .  So, we can write 

2 

CI = f , / 2 g o  c2 = f 2 / 2 g o  for 'p4 ( 4 a  1 
c, = f , /  k' c2 = fi/ k' for DQ. ( 4 b )  

This normalisation is used in presenting the phase diagrams. To compare the two 
potentials for largef, and f i ,  where the potential barrier is important, we must normalise 
them to g o / 2  and not to 2g0 for the (p4 potential, since Eo is fixed. In giving the different 
analytic formulae, however, we have kept f, and f i  explicitly. In what follows we 
choose k 2  = 1 and eo = 1 for the DQ potential and go = g ,  = 0.5 for the (p4 potential. In 
fact the results can be extended to any value of g ,  for the (c4  model, if we measure 
displacements in units of &&, force constants in units of g o ,  so that the energy is 
measured in units of g o / g ,  and g ,  is thus eliminated. 

Since c ,  (or f , )  and c2 (or f 2 )  can be either positive or negative, a competition can 
arise between neighbouring interactions, while the local potential tends to lock the 
system. Thus, we expect a variety of possible ground states at zero temperature ( T  = 0). 



228 G Vlastou-Tsinganos et a1 

They can be obtained as static solutions of the following nonlinear difference equation: 

( 5 )  3 
i n 3 m  = f i & U n , m  + f i A b u n , m  + g0un.m - g4un.m = 0 

where the difference operators A6 and AA are defined as: 

A 6 u n . m  = u n t 1 . m  + u n , m + l +  u n - l , m + l +  u n - 1 . m  + u n , m - l +  u n + I , m - l - 6 u n . m  

ALun,, = ~ n + l , m - 2 +  u n t Z , m - l +  u n + l , m + i  + U n - l , m + Z +  u n - Z , m + l +  u n - 1 , m - l - 6 u n . m .  

( 6 a )  

(66)  

For the DQ case the force is given by 

- k 2 [ u n , n i  -(+o sgn(un,m)I* 

There is a large number of solutions to these equations, but here we will only be 
interested in commensurate states. In general, the solutions for the (p4 potential must 
be obtained numerically but for some special cases we can obtain simple analytic 
solutions, such as the following two obvious cases. (i) The N x 1 ( N  = even) configur- 
ation where the displacement u is only a function of n and is the same for all m. It 
has N / 2  u p  and  N / 2  down displacements symmetrically having equal absolute 
displacements. Equivalently the displacement can depend only on m, 1 x M configur- 
ation, which is degenerate in energy with N x 1 for N = M. (ii) The N x 1 ( N  = odd) 
configuration of ( N  + 1 ) / 2  u p  and  ( N  - 1 ) / 2  down, with some equal absolute displace- 
ments. Of course there are other solutions depending on n and m simultaneously, 
while there is also the possibility of symmetry breaking by spontaneous creation of 
domains. In table 1 we present the analytic solutions obtained with the (p4 potential 
for the displacements and  energy. In table 2 we present the corresponding results for 
the DQ potential. In reading table 2 we must be careful that in the variation of the 
parameters f l  and fi the denominators in the displacements remain positive. This is 
consistent with the choices for the (+n,m or equivalently the sign of U,,,,. By expanding 
the formulae for small f l  and  fi for k 2  = 2g0 one can easily show that the results for 
the 'p4 and DQ potentials are identical. For the more general periodicities we must use 
numerical techniques and  the results are described in the next section. 

In section 4 we will examine the phonon stability of these solutions but one remark 
can already be made by looking at the 2 x 1 structure for the two cases. In the DQ case 
the vanishing of the denominator in the displacement (and in energy) means that near 

Table 1. Analytic solutions for the displacements and energy, obtained with the (p4 potential. 

Period Structure Displacement Energy/site Conditions 



Periodic structures in a ZD lattice 229 

Table 2. Analytic solutions for the displacements and energy, obtained with the DQ potential 

Period Structure Displacement Energy/site Conditions 

2 x  1 T 1  

3 x I ( D )  T 3 

4 x  1 t T J I  
k 2 u o  

k '+4f l+8f2  
* 

k 2 u o  o,*- 
k 2  + 9fl 

T 1 *  
3 x 3 0 )  1 T 

* ? &  

3 k 2 u i f ,  

k' + 9f, 

4 k 2 u i  f, 
k 2 + 9 f ,  

k' + 6f, + 9f2 > 0 

k' + 9.fl > 0 

k 2  + 9.fl > 0 

8(f1 +f2) + k 2  = 0 the atoms have very large potential energy from the on-site potential, 
which is balanced by the competitive interactions between neighbours. The correspond- 
ing instability for the q4 potential comes from the vanishing of the argument in the 
square root for the displacement, corresponding to the two atoms moving opposite 
towards the top of the barrier. 

3. Numerical evaluation of ground states 

To determine the phase diagram in the space of the parameters c ,  and c 2 ,  for the low 
periodicities, we use the method of simulated annealing, in order to minimise the 
energy (Kirkpatrick et a1 1983). The idea is in analogy with crystal annealing with 
heating and slow cooling allowing enough time for the redistribution of atoms as they 
lose mobility. This fictitious heating and cooling, i.e. the pattern used, is critical for 
the correct determination of the low-energy state. It uses a Boltzmann probability 
distribution function, which allows even at low temperature a small chance of a system 
being a high-energy state. Therefore, there is a corresponding chance for the system 
to get out of a local energy minimum in favour of finding a more global one. Starting 
with a certain n x 1 or n x m unit cell with random displacement coordinates, but with 
periodic boundary conditions, we lower the energy by the above Monte Carlo method. 
Using the appropriate annealing pattern, we locate the global minimum approximate 
configuration. We then proceed to find the exact energy minimum by fine tuning with 
the gradient method, using the energy derivative to ensure the correct direction of 
minimisation. It is impossible to give an exact recipe for the annealing pattern. What 
is important in this procedure is to make it easy for configuration changes to climb 
over energy barriers, so that it visits all the local minima. A characteristic pattern is 
given below, but in each case one must make sample runs to choose initial temperature, 
cooling rate, sampling pattern and atomic displacement, to make sure that all possible 
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low-energy configurations are visited. The highest fictitious temperature was usually 
taken as about the barrier height for the (04 potential, which in dimensionless units is 
equal to i. For small f, and f2 (or competing) this has been checked to be sufficient 
so that we visit many times the possible configurations. In general, with 20 steps we 
lower the fictitious temperature just above zero, so that we can still visit all nearby 
minima, while the global minimum is left to be found by the gradient method. For 
each temperature we use at least 10000 points subdivided into 100 groups of 100 
points, to locate the minimum more reliably. The maximum random atomic displace- 
ments were varied between 0.1 and 0.3. The results were also repeated with different 
initial conditions. Using large atomic displacements can be very efficient to overcome 
barriers. The exact annealing pattern varies for different regions in  the c , ,  c2 parameter 
space, depending on whether one expects high barriers in configuration space or very 
closely spaced minima. For example, the region where the n x 1 periodicities are found 
is one example where the global minimum of the configuration is very close to other 
minima and so for its determination one must be very careful. So one might have to 
change the maximum temperature, number of temperature steps, cooling rate, displace- 
ment, etc. 

The phase diagram in figure 2, made with the above techniques, shows the following 
periodic configurations to dominate: 1 x 1, 2 x 1, 3 x 1 ,  4 x 1, 3 x 3. This later structure 
has two different patterns to be called A and B respectively. The 3 x 3(A) structure in 
the literature is usually referred to as a 4 3  x J3 structure. This is due to the high degree 
of symmetry of the 3 x 3(A), so that a much smaller unit cell can be constructed. There 
is even a third 3 x 3 structure denoted as C which is degenerate with the 3 x 1 structure. 
In the following we shall try to explain briefly the gross features of the diagram. An 
important consideration to that respect is the evaluation of the numbers n ,  and n ,  
respectively of the average number of first and second neighbours which have opposite 
displacements (in sign). The large relative displacements give large positive or negative 
contributions to the total energy. Of course, the measure of the relative displacements 
is important for distinguishing between patterns with the same n, and n, numbers. 
This depends not only on the average numbers ( n ,  and nz) over the whole unit cell, 

Figure 2. Ground state ( T = 0) phase diagram for the (p4 potential. The on-site potential 
parameters are go = g, = 0.5. 



Periodic structures in a 2~ lattice 23 1 

but also on the corresponding numbers for each specific atom. In table 3 we present 
the average n, and n, numbers for the different configurations. 

For attractive first and second neighbours, c ,  > 0 and c2 > 0, the lowest energy state 
is the 1 x 1 (ferro) with all the atoms in the minima at U = uo (or U =  -uo for the 
degenerate state). The 1 x 1 persists even with repulsive second neighbours ( c2 < 0), 
where there is a triangular-shaped region containing 5 x 1, 6 x 1, 7 x 1, 8 x 1, 9 x 1 and 
l o x  1 structures in an irregular manner. 

Continuing clockwise there is a large region of 4x 1 which has a large n2 number 
which means that for repulsive second neighbours the energy is significantly lowered, 
while it overwhelms other structures with the same n, but with larger n, , since c, > 0. 
For small c ,  > 0 and c2 < 0, approximately between the lines 5c2 + c, < 0 and c ,  = 0 we 
find the 3 x 1 structure. Even though it has the same n, and higher n, numbers than 
the 4x 1, it has lower energy because we must take into consideration also the 
magnitudes of the relative displacements between atoms in the region where c,  becomes 
small. As shown in table 3 the 3 x 3(C) structure is degenerate in energy with the 3 x 1 
structure, which has the same n, and n, numbers. On the other side of the negative 
c2 axis we have the degenerate 3 x 3(B) and 3 x 3(B') structures with n, = 1.55 and 
n, = 2 which overtake the 3 x 1 because n, is larger and c ,  < 0. 

Table 3. The average number of first ( n , )  and second ( n J  neighbours per site which present 
displacements with opposite signs. 

Period Structure n l  n2 

1 x 1  T 
2 x  1 t i  
3 x 1  t t l  
4 x  1 T t l l  
5 x 1  t t t i l  
n x l ( n / Z , n / 2 )  t t t 1 1 1 
n x l ( n - l , l )  t t T t 1 

3 x 3(A) t l ?  
T t . 1  

L t "  
n x n  as in 3 x 3(A) 
2 x 2  t L  

3 x 3(B) f t t  
T t  

1 ? t  

L i T  

T ? 1  

1 1 1  
3 x 3(B') T t l  

3X3(C) L l l  
l l t  

3 t . 1  
3 x l ( D ) "  T . 1  
3 x 3(D)" t l .  

1 . t  
* ? l  

0 
L 

1.33 
1 
41 5 
41 n 
41 n 

61 n 
1.5 

1.55 

1.55 

1.33 

0 
2 
2 
2 
81 5 
81 n 
61 n 
0 

41 n 
1.5 

2 

2 

2 

In these periodicities there are three different displacement so that the pair (2, 1) means 
that there are two neighbours like T or J and one neighbour like T 4 per atom on average. 
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In the c , ,  c, < 0 region, the largest area is occupied by the 2 x 1 (antiferro) structure 
which has the highest possible values for both n ,  and n,.  In comparing the 2 x 1 and 
4 x 1 structures from table 1 we see that their energies are equal on the negative c2 axis 

The last quadrant of the phase diagram is occupied by the symmetric 3 ~ 3 ( A )  
configuration which has n ,  = 2 and n ,  = 0, thus overtaking 1 x 1 for c ,  < 0. The line 
c2 = 0 is included in the area occupied by 3 x 3(A) which slowly extends to small but 
negative c,. The boundary curve seems to be a parabola, its concave side facing c2 < 0, 
although we have no analytic expression for the 3 x 3(A) structure, (as in the case of 
the DQ potential) to show it explicitly. 

In our search for the ground state, we have compared the energies of periodicities 
up to 15 x 1 and 4 x 4 among themselves. At the borders of 3 x 1 with 4 x 1 and of 4 x 1 
with n x 1, we have, in small intervals of the phase space parameters, calculated energies 
up to the 40 x 1 periodicity. The borderlines separating large areas of periodic structures 
are not sharp. The periods of the structures within the boundaries of the main structures 
will be p ,  + p z ,  pi + 2 p , ,  or 2 p ,  + p z ,  if p ,  and p 2  are the periods of the structures that 
the borderline separates. 

Finally in figure 3, for comparison we present the phase diagram for the DQ potential 
partly produced by directly comparing the analytical energy expressions and partly by 
the simulated annealing Monte Carlo method described previously. The simulated 
annealing method has more difficulties in converging to the lowest ground states for 
the same annealing pattern than in the (p4 potential. Here we should mention that the 
simulated annealing results were smoothed out and only periodicities which occupy 
a large area in the c i ,  c2 space have been shown, in order to clearly present the 
differences between the DG and 5c4 potentials. Details are discussed in the last section. 
In the next section we will discuss the stability of the periodic structures which is quite 
different for the two potentials as can be seen from figures 2 and 3. 

( c ,  = 0). 

Figure 3. Ground state 1 T = 0 )  phase diagram for the double quadratic potential ( k 2  = 1, 
U"= 1 ) .  

To investigate the transition between different periodicities we give a contour plot 
of the energy as a function of c ,  and c2 in figures 4 ( a )  and 4(b)  for ip4 and DQ 

respectively. For the grid of investigation, the contours are quite smooth curves and 
they are parallel curves having the same slope. In the region where 4 x 1 and 2 x 1 
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Figure 4. Contour plot of the ground-state energy as a function of c, and c1 for ( a )  the 
p4 and ( b )  the DQ potential. The energy is decreasing in the direction of the arrow. 

appear the slopes are - +  and - 1  respectively as can also be seen from the explicit 
energy expressions in table 1. For the region where 3 x 3(A) is the ground state, the 
slope is infinite since there is no c2 dependence in energy. In the 3 x 1 and 3 x 3(B) 
regions the contours are curved suggesting that the respective energies are not linear 
functions of c1 and c2. Of course, in the transition region between the different 
periodicities one expects a variety of commensurate structures, which on a smaller 
scale could show fluctuations in the energy contours of the ground state, and different 
curvatures. In the DQ case in fact, near the instabilitity region (see next section), the 
energy contours are very dense and show changes in curvature. 

4. Stability 

We review first the results for the DQ potential which can be valid also for the 1 x 1 
structure for the (p4 model. In the DQ model the stability is the same for all the periodic 
structures due to the piecewise linearity of the force. In checking for linear stability 
we look for a perturbation of the periodic solution U!,",, , i.e. 

u , , ~  = exp[i( mp + nq - ut)]  ( 7 6 )  

where ( p ,  q )  are the wavevector components in the first Brillouin zone, in the skew 
coordinate system. The system is stable if the linearised equations obtained by substitut- 
ing ( 7 0 )  in the equations of motion, have positive eigenvalues for all ( p ,  q )  in the 
Brillouin zone, i.e. if 

= 1 - 2c,[cos p +cos q +cos(p - q )  - 33 

- 2c,[cos(2p - q )  +cos(p - 2 q )  +cos(p + 9 )  -31 
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is positive. To check this, it is only necessary to look for the minima of the dispersion 
surface. There are five families of minima points (see figure 5):  

ferro F (0,O) 

antiferro AF 

triagonal T 

(0 ,  *n), (fn, O ) ,  (*T, * T )  

( 2 n / 3 ,  - 2 n / 3 ) ,  ( - 2 n / 3 , 2 n / 3 ) ,  ( 4 ~ / 3 , 2 ~ / 3 ) ,  etc 

helical H I  (0, *41), (*41, o), (41 9 SI), (-41 9 -41) 

with cos q1 = -(1+ c l / c , ) / 2  for -3  < c , / c 2 <  1 

helical H2 (42, - 4 2 L  (2q2,42)3 (q2,242) 

with cos q2 = (1 - c l / 3 c 2 ) / 2  for -3 < cl/c2 < 9. 

The names used for the minima denote the symmetry of the corresponding periodic 
plane wave and the structure of the planar lattice, if the particular point of the dispersion 
is the lowest, i.e. ferro - 1 x 1, antiferro - 2 x 1, triagonal- 3 x 3 ( A ) .  This type of ‘soft 
mode’ assumption is not unreasonable. In fact it is quite well satisfied for the DQ 

potential, with a ‘weak’ condition (Axel and Aubry 1981) on the signs of the U,,,, 
(U,,,,). The solution for the above cases is also consistent with the strong condition 
on u , , ~  for the particular periodic structures. Other minima of the dispersion relation, 
i.e. the ‘helical’ points (which in magnetic systems correspond to rather interesting 
helical-type structures), do  not impose their structure on the lattice. The corresponding 
periodic solution for the lattice does not necessarily have the lowest energy for that 
particular range of the phase space parameters c, and c2.  Of course, special ‘helical’ 
solutions can exist, i.e. the n x 1 and n x m structures. In fact, n x 1 structures are 
actually found along straight lines, as can be seen in figure 3,  but the n x in periodicities 
do not give minima in the same region that the helical n x m points are minima. 

Figure 6 shows the stability area for the DQ potential. What is remarkable here- 
although very special for this piecewise linear force-is that the static displacements 
u ( o )  n , m ,  together with the u , , ~  parameters, do not appear in the expression for the 
frequency of the linearised perturbations, so that all structures have the same stability 

T AF I-n 1 

Figure 5. Minima of the dispersion relation, for the DQ potential, in the first Brillouin zone. 
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f 

-1  0 -0 5 0 0 5  
C l  

Figure 6. Stability area (strips) for the DQ potential and the 1 x 1 structure in pJ 

region. Due to the nonlinearity of the (p4 a general expression for the frequency of 
small oscillations is not possible for all configurations. Therefore we have to consider 
the stability of each periodic solution seperately. 

The linearised equations for the q4 potential are: 

Vn,m =fi&Un,m + f i A k V n , m  + g0Vn.m -3g4~L::vn,m. ( 9 )  

By substituting U:!, =a and normalising the force constants to 2g0 we get for 
the 1 x 1 solution the same eigenvalue problem and the same B ( p ,  q )  as above. ( In  
(8) k 2  + 2g,.) We can also solve analytically for the stability of the 2 x 1 and 4 x 1 
structures by substituting in (9) for the corresponding U:,, from table 1 and obtain 
for W p ,  4 )  

Bzxl( p ,  4 )  = 1 - 2 4 ( ~ ,  + ~ 2 )  - ~ C ~ [ C O S  p +COS +COS( p - 4 )  -31 

- ~ c , [ c o s ( ~ ~ - ~ ) + c o s ( ~ - ~ ~ ) + c o s ( P + ~ ) - ~ ]  (10) 

- 2c,[cos(2p - q )  +cos( p - 2 9 )  + c o s (  p + q )  - 31. (11) 

B4xl(~, 4 )  = 1 - 12( C I  + 2 ~ 2 )  - ~ C ~ [ C O S  p + COS +COS( p - 4 )  -31 

The above two expressions have the same ( p ,  q )  dependence (because of the square 
of U:,,) and therefore the same extrema points. But since the dependence on c 1 ,  c2 
is different the stability diagrams can be very different, as can be seen in figures 7 ( a )  
and ( 7 b ) .  

c ,  

Figure 7. Stability area (strips) for ( a )  2 x 1 and ( b )  4 x 1 in the v4 model. 
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6 . 4  

The investigation of the stability for the rest of the periodic structures appearing 
in the ground-state phase diagram, has to be done numerically for mainly two reasons. 
(i) The equilibrium displacements are not known analytically because equation (3) 
produces in general a system of nonlinear equations whose number can be as high as 
the total number of atoms in the unit cell. ( i i )  The Fourier-transformed linearised 
eigenvalue system of equations becomes quite large and it is not even clear that the 
eigenvalues have the same dependence on p and 9. The matrix that gives the different 
branches of the spectrum involves the different displacements U!,:;. Therefore, one 
has to scan the whole Brillouin zone. 

In this way the 3 x 1 and 3 x 3(A) stability analysis was done as shown in figures 
8 ( a )  and 8( b )  respectively. For a general 3 x 3 structure we must solve a 9 x 9 matrix 
eigenvalue problem, which in the case of the 3 x 3(A) is reduced to a 3 x 3 matrix. For 
5 x 1 and  6 x 1, stability was checked only in the c, > 0, c2 < 0 region and  for the 3 x 3( B) 
structure in the c, < 0, c2 < 0 region. They were all found to be stable in the area in 
which they appear in the (c , ,  c2) phase diagram. In fact the same is true for all the 

. / '  1 ;  I 
.' 

./' unstable 
/ '  - / - 

0 5  

0 

c2 

-0 5 

-1  0 
- 1  0 -0 5 0 0 5  - 1 0  -0 5 0 0 5  

CI C l  

8.0 t ..- 

- 

3 . 2  - - 

1 .6 - - 

"". ' " '  '., ....... . ............, .....,, 

Figure 8. Stability area (strips) for ( a )  3 x 1 and ( b )  3 x 3(A) in the cp model. 
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periodicities checked. This is not surprising since the Monte Carlo method minimises 
the energy and should in principle find a global stable minimum. The only complication 
can arise from the imposition of periodic boundary conditions, which could act as an 
external constraining force if the periodicity of the ground-state structures is not the 
same as that of the structures examined. 

5. Discussion 

Using Monte Carlo numerical techniques, we determined the low-periodicity structures 
and constructed a phase diagram of the ground state at zero temperature. The grid in 
the space of the interaction parameters was quite coarse so that the boundaries are 
accurate only up to lo-, in the normalised values of c,  and c2.  This will give us a first 
approximate picture of the periodic structures that occupy the largest area in the ( c , ,  c,) 
phase diagram. 

In  comparing the results for the two potentials there are both similarities and 
differences. The same commensurate phases appear for both potentials, but they cover 
different size areas in the space of the parameters ( c , ,  c2) .  Thus in the (p4 potential 
the 2 x 1 structure occupies essentially the whole c 1 ,  c2 < 0 quadrant, while in the DQ 

case it is limited near small c ,  and c2 values. Similarly, the 3 x 3(A) structure occupies 
the whole c1 < 0, c2 > 0 quadrant for the (p4 potential, while it is limited to a narrow 
strip parallel to the c2 axis for the DQ case. These important differences are due to 
the fact that the stability of the structures for the DQ potential is strongly confined. 
Thus the region c,  < 0, c2 < 0 is practically not allowed, because the harmonic interpar- 
ticle interactions are repulsive and the atoms can easily climb to large displacements 
along the also quadratic on-site potential driving thus the instability. In contrast for 
the (p4 potential, the stability region of the nonlinear structures (different for each 
structure) covers the whole c,  < 0 and c2 < 0 area due to the steepness of the potential 
for large displacements. On the other hand the instability for an individual structure 
is caused when neighbouring atoms reach the top of the barrier at zero displacement. 
So, the actual form of the potential can be very important. We can expect more changes 
if we consider a softer potential for large displacement, like an inverted (p6 potential, 
i.e. 

(12) 
with g6> 0. The case g6 < 0 will not significantly change the results of the (p4. For 
g, > 0, however, we can demonstrate one change by looking at the 2 x 1 structure, 
where the displacement squared of the two oppositely displaced atoms in the unit cell 
is 

V ( u )  = -~gou-+~g4u4-~g6u6 I ’  

There is a second solution with the positive sign in front of the square root which, 
however, is unstable, but for other periodicities it could give another possibility. 

From equation (13) it is easy to show that there are no solutions for 

while for the (p4 potential the solution extended for f, +fi + -a. The new instability is 
caused by the softening of the potential at large displacements, which resembles the 
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DQ case (see conditions in table 2). The critical f l  +f2 value also corresponds to the 
softening of the (0, 7r) point in the Brillouin zone. On the large and positive side we 
still have the instability for fl +f2 > g,/8 when the neighbouring atoms reach the top 
of the barrier. From the above we demonstrate the competition of the on-site potential 
and the interatomic interactions. The degree of softness of the on-site potential limits 
its region of stability. The softness of the DQ potential is also reflected in the sensitivity 
of the annealing procedure of the Monte Carlo method for the determination of the 
ground state. Thus, to obtain the diagram in figure 3 it was necessary, near the 
borderlines between structures, to repeat the procedure more than once. The T=O 
phase diagram can also yield some information on what to expect at finite temperature 
(Janssen and Tjon 1982). By taking the thermal average of the equation of motion 
and using the self-consistent phonon approximation, i.e. 

we obtain for the thermal average ( u , , ~ )  the same equation as for u ~ , ~  except that the 
parameter g ,  becomes gb = go - 3( ui , , )g , .  So, decreasing the temperature, the fluctu- 
ations decrease and the effective g, increases. This means that in the ( c l ,  c2)  diagram 
(for the same f ,  and f 2 ) ,  we move essentially parallel to the line c1 = c2 and from the 
upper-right corner to the lower-left corner. This picture, however, is very approximate. 
In fact, increasing the temperature or couplings tends to favour motion of the particle 
between the two minima and we can also have the appearance of a ‘paramagnetic’ or 
disordered phase. This would be reflected in the single-particle probability distribution 
with a transition from a two-hump function to a single peak at U = 0. To obtain reliable 
phase diagrams, however, we need to consider explicitly the quantum mechanical free 
energy of the system (Frosch and Buttner 1985). This work is in progress. 

In this paper we have not examined in detail the possibility of an incommensurate 
( I C )  ground state. Of course there may also exist incommensurate phases and domain 
walls, but we will be concerned with these in later work. It is also difficult to eliminate 
numerically the possibility of a nearby long-periodicity structure. Some preliminary 
results are obtained by assuming that the I C  state can be well represented by a sinusoidal 
modulation ansatz for the displacement (Behnkert et a1 1987). This is a good assump- 
tion near the normal-to-Ic phase transition but is not valid over the whole possible 
region of incommensurability (Janssen 1986a). For the parameters considered in our 
phase diagram (with a grid of 0.02) the IC state energy was higher than the lowest 
periodic structure. This is not in disagreement with the results of Benkert er a1 (1987) 
where the range of parameters for which an IC ground state was found corresponds, 
in our case, to a single-well on-site potential. This result is also not in contradiction 
with an analytical result of Axel and Aubry (1981), in a one-dimensional model, where 
it was assumed that the amplitude of modulation is very small, which again could 
correspond effectively to a potential with a single minimum. We plan a detailed study 
of the IC states (which we expect to be of limited extent in the range of parameters 
studied) also over a larger range of model parameters with a finer grid and using 
mapping techniques which, however, require large computations. 

Finally we must look in more detail along the borderlines of figure 2. For sufficiently 
large on-site potential or equivalently small interatomic force constants the commensur- 
ate numbers are everywhere dense so that the incommensurate phase will be unstable 
with respect to nearby high-order commensurate structures. This, however, need not 
be the case for a weak potential. The point c I  = c2 = 0 also seems to be the meeting 
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point of many competing structures. Finally the work should be extended to study 
the nonlinear stability of the described ground states; that is, to consider the spon- 
taneous creation of domains either as one-dimensional domain walls or as two- 
dimensional clusters with lower energy than the periodic structures. 

Our results present similarities with the results of a triagonal Ising model with 
nearest- and next-nearest-neighbour interactions with an external field (Tanaka and 
Uryu 1975, Nakanishi and Shiba 1982). There are, however, qualitative and quantitative 
differences in the phase diagram. The main reason is that the external magnetic field 
tends to align all spins in one direction in the absence of interaction between spins. 
Thus the c, = c, = 0 point is not a multiple degeneracy point since only the 1 x 1 structure 
has the lowest energy. This causes both a shift of the structures towards negative c, 
and c2 and also some rearrangements. The unidirectionality of the magnetic field is 
in contrast to the double-well potential, so that we expect quite different structures for 
the possible stable domain walls. 

The phase diagram will change significantly for a different geometry of the ZD 
lattice since the important ‘coordination’ numbers n ,  and n, will be different. In 
particular, for a square lattice (Vlastou-Tsinganos and Flytzanis 1989) we have the 
ratio of n,/ n, = for each site. We also expect, for symmetry reasons, the 3 x 1 and 
3 x 3 periodicities not to be important, as was actually found. 

Our model is relevant to the description of the phases of biphenyl (Heine and Price 
1985, Benkert et af 1987, Benkert 1987, Benkert and Heine 1987), where a (p4 

intramolecular potential is included. Also, the periodic structures of LiIO, have been 
already studied by (Coquet et a1 1988) with a DQ potential with two degrees of freedom, 
describing the (Y and p phases and their transitions. An improvement of our model 
to two degrees of freedom with an inclusion of off-plane motion could be a good 
model for the y-phase of LiI03. 
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